skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Shengchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current AI-assisted protein design utilizes mainly protein sequential and structural information. Meanwhile, there exists tremendous knowledge curated by humans in text format describing proteins’ high-level functionalities, yet whether the incorporation of such text data can help in protein design tasks has not been explored. To bridge this gap, we propose ProteinDT, a multimodal framework that leverages textual descriptions for protein design. ProteinDT consists of three consecutive steps: ProteinCLAP, which aligns the representation of two modalities, a facilitator that generates the protein representation from the text modality and a decoder that creates the protein sequences from the representation. To train ProteinDT, we construct a large dataset, SwissProtCLAP, with 441,000 text and protein pairs. We quantitatively verify the effectiveness of ProteinDT on three challenging tasks: (1) over 90% accuracy for text-guided protein generation; (2) best hit ratio on 12 zero-shot text-guided protein editing tasks; (3) superior performance on four out of six protein property prediction benchmarks. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026
  2. null (Ed.)
    Several works have aimed to explain why overparameterized neural networks generalize well when trained by Stochastic Gradient Descent (SGD). The consensus explanation that has emerged credits the randomized nature of SGD for the bias of the training process towards low-complexity models and, thus, for implicit regularization. We take a careful look at this explanation in the context of image classification with common deep neural network architectures. We find that if we do not regularize explicitly, then SGD can be easily made to converge to poorly-generalizing, high-complexity models: all it takes is to first train on a random labeling on the data, before switching to properly training with the correct labels. In contrast, we find that in the presence of explicit regularization, pretraining with random labels has no detrimental effect on SGD. We believe that our results give evidence that explicit regularization plays a far more important role in the success of overparameterized neural networks than what has been understood until now. Specifically, by penalizing complicated models independently of their fit to the data, regularization affects training dynamics also far away from optima, making simple models that fit the data well discoverable by local methods, such as SGD. 
    more » « less